2018

P. S. Mundada, G. Zhang, T. Hazard, and A. A. Houck, “Suppression of Qubit Crosstalk in a Tunable Coupling Superconducting Circuit,” Physics Review Applied, vol. 12, pp. 054023, 2018. Publisher's VersionAbstract

We report the suppression of static ZZ crosstalk in a two-qubit, two-coupler superconducting circuit, where the ZZ interaction between the two qubits can be tuned to near zero. Characterization of qubit crosstalk is performed using randomized benchmarking and a two-qubit iSWAP gate is implemented using parametric modulation. We observe the dependence of single-qubit gate fidelity on ZZ interaction strength and identify effective thermalization of the tunable coupler as a crucial prerequisite for high fidelity two-qubit gates.

2017

G. Zhang, Y. Liu, J. J. Raftery, and A. A. Houck, “Suppression of photon shot noise dephasing in a tunable coupling superconducting qubit,” npj Quantum Information, vol. 3, pp. 1, 2017. Publisher's VersionAbstract

We demonstrate the suppression of photon shot noise dephasing in a superconducting qubit by eliminating its dispersive coupling to the readout cavity. This is achieved in a tunable coupling qubit, where the qubit frequency and coupling rate can be controlled independently. We observe that the coherence time approaches twice the relaxation time and becomes less sensitive to thermal photon noise when the dispersive coupling rate is tuned from several MHz to 22 kHz. This work provides a promising building block in circuit quantum electrodynamics that can hold high coherence and be integrated into larger systems.

D. - S. Ma, et al., “Spin-Orbit-Induced Topological Flat Bands in Line and Split Graphs of Bipartite Lattices,” Physical Review Letters, vol. 125, pp. 266403, 2020. Publisher's Version

C. S. Chiu, D. - S. Ma, Z. - D. Song, B. A. Bernevig, and A. A. Houck, “Fragile topology in line-graph lattices with two, three, or four gapped flat bands,” Physical Review Research, vol. 2, pp. 043414, 2020. Publisher's VersionAbstract

The geometric properties of a lattice can have profound consequences on its band spectrum. For example, symmetry constraints and geometric frustration can give rise to topologicially nontrivial and dispersionless bands, respectively. Line-graph lattices are a perfect example of both of these features: Their lowest energy bands are perfectly flat, and here we develop a formalism to connect some of their geometric properties with the presence or absence of fragile topology in their flat bands. This theoretical work will enable experimental studies of fragile topology in several types of line-graph lattices, most naturally suited to superconducting circuits.

P. S. Mundada, A. Gyenis, Z. Huang, J. Koch, and A. A. Houck, “Floquet-Engineered Enhancement of Coherence Times in a Driven Fluxonium Qubit,” 2020. Publisher's VersionAbstract

We use the quasienergy structure emerging in a periodically driven fluxonium superconducting circuit to encode quantum information with dynamically induced flux-insensitive sweet spots. The framework of Floquet theory provides an intuitive description of these high-coherence working points located away from the half-flux symmetry point of the undriven qubit. This approach offers flexibility in choosing the flux bias point and the energy of the logical qubit states as shown in Huang et al.[arXiv:2004.12458 (2020)]. We characterize the response of the system to noise in the modulation amplitude and dc flux bias, and experimentally demonstrate an optimal working point that is simultaneously insensitive against fluctuations in both. We observe a 40-fold enhancement of the qubit coherence times measured with Ramsey-type interferometry at the dynamical sweet spot compared with static operation at the same bias point.

Z. Huang, P. S. Mundada, A. Gyenis, D. I. Schuster, A. A. Houck, and J. Koch, “Engineering Dynamical Sweet Spots to Protect Qubits from 1/f Noise,” arXiv: 2004.12458, 2020.Abstract

Protecting superconducting qubits from low-frequency noise is essential for advancing superconducting quan- tum computation. We here introduce a protocol for engineering dynamical sweet spots which reduce the sus- ceptibility of a qubit to low-frequency noise. Based on the application of periodic drives, the location of the dynamical sweet spots can be obtained analytically in the framework of Floquet theory. In particular, for the example of fluxonium biased slightly away from half a flux quantum, we predict an enhancement of pure- dephasing by three orders of magnitude. Employing the Floquet eigenstates as the computational basis, we show that high-fidelity single-qubit gates can be implemented while maintaining dynamical sweet-spot opera- tion. We further confirm that qubit readout can be performed by adiabatically mapping the Floquet states back to the static qubit states, and subsequently applying standard measurement techniques. Our work provides an in- tuitive tool to encode quantum information in robust, time-dependent states, and may be extended to alternative architectures for quantum information processing.

A. Premkumar, et al., “Microscopic Relaxation Channels in Materials for Superconducting Qubits,” arXiv: 2004.02908, 2020.