A scanning transmon qubit for strong coupling circuit quantum electrodynamics

Publication Year
2013

Type

Journal Article
Abstract
Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modeling of quantum systems that is computationally intractable with a classical computer. Quantum simulations of quantum many-body systems have been performed using ultracold atoms and trapped ions among other systems. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study with qubits coupled to the resonators producing effective photon-photon interactions. Such a system promises insight into the nonequilibrium physics of interacting bosons but new tools are needed to understand this complex behavior. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area.
Journal
Nature Communications
Volume
4
Issue
May
Pages
1–6
ISSN Number
20411723

Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modeling of quantum systems that is computationally intractable with a classical computer. Quantum simulations of quantum many-body systems have been performed using ultracold atoms and trapped ions among other systems. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study with qubits coupled to the resonators producing effective photon-photon interactions. Such a system promises insight into the nonequilibrium physics of interacting bosons but new tools are needed to understand this complex behavior. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area.